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NATTONAT. ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2497

GENERALIZED CONICAI~FLOW FIELDS IN
SUPERSONIC WING THECRY

By Harvard Lomax and Max,. A. Heaslet
SUMMARY

Linearized, compressible—flow anaglysls is applied to the study of
quasi—conical supersonic wing theory. Single—integral equations are
derived which relate elther the loading to the shape of a lifting
surface or the thickness of a symmetrical wing to the pressure distribu—
tlon for triangular wings witld subsonic leading edges. The forms of
these equations and thelr inversions are simplified through the intro-—-
duction of the finite part and the gemeralized principal part of an
integral. .

Applications of the theory, in the lifting case, include previously
known resultss In the nonlifting case, 1t is shown that for a specified
pressure distribution the theory does not always predict a unique thick-—
ness dlstribution. This 1s demonstrated for a triangular plan form hav—
ing a constant pressure gradient in the stream direction.

INTRODUCTION -

If a sufficiently thin wing at a small angle of attack is placed in
a uniform stream, its asrodynamic properties can be determined by means
of the analysis assoclated with linearized compressible—flow theory.
If, moreover, a Carteslan coordinate system 1s used such that the wing
is sltuated on or in the immediate vicinity of the xy plane and the
stream flows parallel to and in the direction of the positive x axls,
1t follows that the basic equation for the perturbation potential
o(x,y,2) can be written in the form

where B2 = Moa—l, Mo ©being the free—stream Mach number.

The application of equation (1) to wing theory is essentially a
mathematical problem involving the solution of a differential equation
with given boundary conditions. Consistent with the assumptions of
linearized compressible flow theory, or small-perturbation theory, the
boundary conditions expressing the prescribed physlcal conditlons are
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given always at z = O and, as a consequence, boundary conditions as
woll as the solutlons are superposable.

The techniques used in the solution of wing problems are, for the
most part, adaptations of existing mathematical methods to the speclfic
type of boundary valuses and thelr supporting surfaces that occur in
aerodynamics. In particular, it is often possible in theory to make a
reduction in the number of independent variables by virtue of known
goametric or physical comditions. The conical-flow-field analysis of
Busemann (reference 1) provides in this way a means of descending from
a three— to a two—dimensional potential equation.

A conical flow field is one in which the perturbatlion velocity com—
ponents and the induced pressures are constant in.magnitude along any
ray from the apex of the field. In this case, the perturbation poten—
tial may be written in the form

o(x,7,2) = x:f1<§x1,%>= Bﬁz(%:%>= Bzf, E";E—Z) | (2)

where @ 1s a homogensous function of degree one In the three variables.
An obvious generalization of this concept leads to the conslderation of
homogensous potential fields of higher degree or, as they are sametimes
called, quasi-conical fields. If @ 1s hamogenecus of degree K + 1,

it follows that

= xfr1 By Bz \_ ki1 X Bz \_ K+l x By
CP(X,y’,Z) b:e Fy /)7 (By) Fz E:'B—y:>" (BZ) Fg 'ETZ"JB‘Z- (3)
Equation (2) yields conical velocity fields, the degree of homogeneity
being zero, while for equation (3) the quasi—conical velocity fields are
homogensous and of degree k. Applications of these quasi-—conical
fields to pitching and rolling triangular wings have been given by
Brown and Adams (reference 2), while Ribner (reference 3) has uséd sim—
ilar methods in the considsration of cancellation elemsnts. Further
examples may be found In the literature. .

If new varilables are introduced in equation (1) such that

Ex—y;-' = N B:TZ = t, ?(x,5,2) = cxtt n(ﬂ:gj (%)

where ¢ 18 an arbltrary constant, the transformed partial differential
equation is

(n2-1) & + ot Qe + (£3-1) Qe — k[2q ﬂh + 2t at — (v+l) Q1= 0 (5)
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Thus, for a quasi-conical flow fleld with apex at the arigin of the
coordinate system, the resultant differentlal equation is elliptic for
all values of 1,0 satisfying the lnequality

%2 — (1-97)(1+2) < 0
that is, for all polnts inside the foremost Mach cone
x2 — 22 — p272 = 0

The analysis of particular problems is therefore intimately associated
with the study of two-dimensional, elliptic~type equations and 1s espe—
clally suited to the use of complex—variable theory. This is the
approach teken by many investigators. In references 4 and 5, Lagerstrom
and Germaln have developed these methods in consliderable detall.

A different approach to the
study of lifting surfaces in conical
flow flelds has been glven by Brown * M
(reference 6) and in reference T. o
In this approach a basic lifting ele—
ment carrying a uniform load distri-
bution and extending radially from / \
the apex of the field (see sketch) is / \
considered first. The Induced veloc— / \
ity field is calculated for such an : / \
element lying in the plane of the ,/ \
wing and inclined to the stream / uyy \
direction at an arbitrary angle 3. \
The solutlion of a particular problem A
then proceeds along one of two lines.

If the loading is given, the strength ‘
of each element 1s fixed and the cal-

culation of the lifting-surface geometry .depends only upon carrying out
the Integration. This is referred to as a direct problem. On the other
hand, 1f the geomstry of the wing 1s given, the loading is unknown and
the strength of the elements must be adjusted so that the resultant ver—
tical Induced velocities are consistent with the given wing slope every—
where on the plan form. The solution of such a problem depends upon the
inversion of a relatively simple singular integral equation and is
referred to as an Inverse problem.

<y

As was pointed out in reference 8, similar methods apply to non—
1ifting problems in conical flow filelds and pressure digtributions cor—
responding to conical elements of thickness can be calculated. In such
cases, however, the direct problem, that is, the one involving the eval—
vation of an integral, i1s the one in which the slope of the wing surface
is glven; and the Inverse problem, that is, the one involving the solu—
tion of an integral equation is the one 1n which the shape of the pres—
sure dlstribution is prescribed.
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The present papsr is concerned with the generalization of the
basic elements of references T and 8 and their application to lifting
and nonlifting problems in quasi—conical flelds of flow for cases
involving subsonic—type leading edges. Only solutions to the inverse
problems will be considered and at all times these will be obtalnsed by
inverting the integral eguation.

The orders of singularities that arise In the analysis are such
that it 1s convenlent to use the concepts of the finite part and gener—
allzed principal part of lmproper Integrals. These generalizations will
prove to be of importance for thelr notational efficiency and permit a
s8implified treatment of the derivatlves of singular integrals. Hadamard
(reference 9) has pointed out clearly the necessary steps in the treat—
mont of such lmproper Integrals, but did not stress the role of the dif-
ferentlal operation in obtaining his integrals. Since somse differences
exlst between Hadamardls definlition of the finlte part and the one used
here, when extensions to multiple Iintegrals aprear, a different notation,
consistent with reference 10 has been adopted. The generalization of
the principal part has also been discussed 1n reference 3.

LIST OF IMPORTANT SYMBOLS

a¢ speed of sound in free stream
c(o) load distribution on 1lifting surface as g function of 6
m slops of radial element relative to free—stream direction
m, slope of right leading edge relative to free—stream direction
m, slope of left leading edge relative to free—stream direction
’ / vo
Mo free—stream Mach number =
o)
ol local static pressure
Po fres—stream static pressure
P angular rate of roll in radlans per second
a free—stream dynamic pressure (l—'povc)z)
Q angular rate of pitch about wing vertex in radians per

sscond.
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p/q

Em
6,600,091
A

K

Po

T

o(x,¥,2)
ﬂ(n,E)

free—stream velocity

gtreamwlse perturbation velocity

perturbation velocity normal to pla.ﬁe of wing
Cartesian coordinates introduced in equation (1)
wing angle of attack

M® -1

angle between free—stream dlrection and lilne through wing
vertex

angle between right leading edge and stream direction
angle between left leading edge and stream direction
discontinuity in u in plans’ of wing (i, — uy)

discontinuity in w in plane of wing (w,; — wy)

(-P], - Pu)
a

load coefficlent

constant determining degree of homogeneity of quasi—conical
velocity field
(See equation (3).)
conical variables introduced in equation (L) ( E]f-, 9xl>
mB, mof, mf
slope of w:'Lng surface relative to free—stream direction
Mach angle (arc cot B)
free—stream density .
region of integration in equations (10) and (27)
perturbation velocity potential introduced in equation (1)

function related in equation (4) to perturbation velocity
potential of a quasi-conical flow field
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Subscripts

u denotes conditions on upper surface of wing

1 denotes conditions on lower surface of wing

ANATYSIS

This investigation is confined to a consideration of inverse prob—
lems; that is, problems that require the inversion of an integral equa-—
tion. As has been pointed out, these problems correspond to the two
following cases: eilther the locad
distribution over a given lifting
surface 1s to be determined or the
thickness distributlion corresponding
to a prescribed pressure distribu—
tion is to be calculated. Ths glven
conditions must, of course, be such
that a quasi-—conlcal flow results.
First, therefore, the plan form will
be chossn, as shown in the accom—
panying sketch, so as to have an
apex at the origin of coordinates
and to be of semi-Infinite extent.
The traces of the foremost Mach cone
are Inclined to the positive x axis
at the Mach angle %y =tarc cot B
and, since only subsonic leading edges are being considered, the leading
edges of the plan form are inclined at angles smaller In magnitude
than u. Denoting these angles by do and ©; and measuring them from
the x axis positively in the conventlional counterclockwise direction,
it follows that the equations of the leading edges are

y=xtan 8y =mgx and y =x tan 53 = mx (6)
In the sketch ®y is positive while &; is negative.
The boundary conditlions for the two types of problems may be stated

as follows, where subscripte u and 1 are used to denote conditions
at 2z =0+ and 2z = O0—, respsctively:

Lifting case: Over all the xy plane A&w = w; —w; =0 and,
except for the region occupled by the plan form, Mu = u, —u,; = 0,
On the plan form, vertical induced velocity is specifled in either
of the forms
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Wu=W2=,VOYk71 <§—> =Voxk72 <§>

where 71 or 7= are known polynomials in x/y.
Nonlifting case: Over all the xy plans /M = w, -, = 0
and, except for the reglon occupled by the plan form,

Ow = wy— w3 = 0. On the plan form, the streamwise induced veloc—
ity 1s specified in elther of the forms

uu=ul=V0ykvl<§->=Voxkv2<§->

where Vv, or V, are lmown polynomials in x/y.

The solution to the two problems will be attalned after con—
sidering first a 1lifting elemont and a thickness element and then,
for each of these problems, the baslc Integral equation 1s deter—
mined by summing the appropriate elements. These derivations are
glven in the followlng sections. In small—perturbation theory the
local load in coefficlent form is related to u by the expres—
gions

Loy _2n_ ()

end the slope in the streamwise direction of an arbitrary surface
z = z(x,y) is related to vertical induced velocity by the expres—

sions
\
Oz Wy
MU T,
\ (8)
N azz _ WZ
L x v,
J
Lifting Case

Upwash fileld of lifting element.— Conslder a radlal element emangit—
ing from the origin and assume that the load carried by the element is
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alB

c y< (9)

' where C 18 a constant for a fixed
position of the element. If the
element 18 inclined to the =x axis
at an angle 8, its upwash field can -
be calculated by subtracting the
induced fields of two triangular

plan forms with vertex angles equal
to 5+ AB and B, each triangle
having one side fixed for conven—
ience along the x axis (see sketch).
Assums, first, that © 1s positive.
As shown in reference 10, the upwash
Tield of the trlangle can be calcu-
lated from the known load distribu—
tion by means of the fundamental
Pormla

Y

Wu _ 1 f dy f (X—XI)% i (10)
— T em— 1 — ——
Vo b J (772 W (21 )22 (372 )

where the region T 1is the area on the plan form that lies ahead of
the traces of the Mach forecone from the point (x,y,0). The bars on the
integral sign indicate that the generalized principal part of the inte-—
grel is to be evaluated (see appendix). By definition, if

\/P Eiz;z;ng£ = G(y,y1) + constant (11a)
(y1-3)

is a known indefinite Integral, the definite integral is evaluated as
follows

 r(y,y1)ay1 _
\72 Geg B - G(y,b) - G(y,a), a,b # 5y (11b)

In case the singularity in the Integrand lies outside the region of
Integration, the definition yields, of course, the.conventional definite
integral. In'some cases in the following analysis the principal—part
8ign will be used to express relations valid for singularities bhoth
ingids and ocutsides the rangs of integration.
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The integration with respect to x3 in equation (10) is carried
out over the area bounded by the lines
1=0, =x1=yr1cotd=yi/m (%) = £B(F-y1)
and, wilth the substitutions,
6 =pw, 1 =8y/x, m=Ppn/x (12)

leads to the results

8(1+1)
146 K '

<§-§ 2oL o W - (na)® anas 0<e, L<y<s

Y o (n—nz) . (13a)
8 (1)

ﬁC][ -6 11" (1 _ Miy2 2
= 22 1 -2 ¢ dni; 0<6, <<l
Wl TRt G - e "y

If 0 and m are negative, the limits in\equations (13a) and (13b) are
reversed so that as the limits are now written changss in sign are
required In the equations.

In order to obtain the upwash field of the required 1ifting element,
1t is sufficient to perform'a direct differentiation for, if w, of a
plan form with vertex angle & is of the form

v, =71 (G,n)

it fallows that when 0<6, the value of upwash induced by the element
may be denoted dwy and is

o
dw, = £(6+/8,n) — £(6,n) = % aa
and when 6<0
3 of
dwy = £(8,7) — £(6+09,3) = — > de

If this process 1s carried out In equations (13a) and (13b) and if the
transformation .

- %
=g L= %
n1 B — t

e i ————————— e o e e
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is introduced, the expressions for dw,;; become

ac de N (n=t)**" at 1<
- 1< <6<l (1ka)
< j —2 (6-q)(6=t)" V142

Ej dw, _ BC d6 glijfn (=6 )2 a% ~l<o< <l (1lb)
(x Vo o Mo J o (e-n)(e—)"T 212 !

"Bquations (1lla) and (14¥b) provide the upwash fields for any radial ele—

ment, regardless of the sign of 6. Integration by parts leads to the
elternative forms : )

L

(E) dwy _ _ BC d9(k+1) 6" f” (n-t)"«/i?c"j at

- 1l<n<6<l (15a)
X VO Lhx 1 (G—t )K+2 ?

—-1<6<qy<1 (15b)

(E)K dw, _ _ BC d9(k+1) 6" f“ (n=t)" vl_t at
* Vo o 1 (9—’0)

where in ons of the integrals the singularity In t requires the use of
a Cauchy principal part.

Derivation and inversion of integral equation.— If now the 1lifting
elements cover the region between 63 and 6, and C is a function
of 6 detormining the 1ift carried along the radlal elemsnt at that

Eoin‘b, upwash produced by the resultant plean form is given by the rela-—
ion

- lm _ Blr+1) 1€ o8 6e) as [ (n=t)f 142 at
( > Ly [_/;1 (6) ‘/Jj . (e—t)""'zt +

0 —
f ° ok c(e) as [ (n=t)" /147 d't] (168 )
n+e

-1 (9-‘1:)“"'2 t

This result can be written as

4 & 6
K%> ?1_ = _ﬂ%}lﬂlo 8® c(e) H(o,n) 4o (16b)
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where
—t «/1-1:2
H(e.’fl) =f .q ) P 91§ o<
X (6—t)
f“ (=) Y142 1< <8
- (e_t)l'c'l'a o =0

The function H(6,n) has a simple pole at @ = 7, and the integral
expression far w, in equation (16b) is therefore evaluated as a Cauchy

principal part.

The boundary condition to be satisfied by equations (16a) and (16b)
is that B% w;/x® Vo 1s a polynomial of degree k 1n the variable 1.
It follows that the (k+l) derivative of the right—hand member of equa—
tion (16b) mist vanish.

Thus
K+l

_ Blk+1)
= == .. °6* c(a) <5n) H(9,q) (a7)

where use 1s made of the generalized principal part of an integral
defined as (see appendix)

b A(xy) dxy _ ( ) A(Il) dxa
n! \ ox

a (xp—x)B+2 X1—X

n+1
(8}:) A(xl)lnlx-—xlld_xl

Hore again the definiltion appliss regardless of. the value of x but is
of particular significance when x 1lies within the region of integra—
tion.

Continuing the calculation in equation (17), one has, after taking
the derivatives with respect to 7,

o - Vl—nzjfeo ok c(9) o
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which may be written in the form

('_6_)“” f’° 6" (o) a0 _
o 01 8-

The function C(6) is thus to be found through the inversion of the
integral equation

0

8. .k L
f o9 C(O) as - Z ay i (18)
61 8-
izo

The inversion of the integral equation

b
f(x).—.-f gle) dt . _scyp
a £

is known to be

(19)

. -
& W (bx)(x~=) [ "/;. x~£ : :|

where A 1s an arbitrary constant to be determined from physical con—
siderations. Thus, the solution to equation (18) for 61<6<6, is

K

o Z agni '\/(90—1])(1]—31)
L - 1 Al 0 1=0 a
o oe V(6 -0)(6-61) [ j;l 6-n ! ]

and this leads to the expression

o® c(8) = Ay LI (20)
J(65-6)(6-61)

where the coefficients bj are functions of 6o and 61 but not func—
tions of 4.

1=0

Relation of gemeral solution to wing goometry.— From equation (9)
the loading on the plan form is, since 6 = By/x,
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K+1 1 | ‘
&p _ <9§.5 b16 (21)
1 \PS L o 6)(e-62)

where the coefficlents by must be determined fram known information -
about the surface geometry.

NACA TN 2k97

Consider next the identity

b _ —>
fa (e_t>1+lJ%_€)=<LT ; <39> f (e—t)ﬂb‘z)‘(— >

a<b<hb (22)

where 1 18 zero or a positive integer. Thils expression lmplies the
equality

0
Kk+2

=1 (e=t) t

since the latter form can be broken, by expansion into rational frac-—
tions, into Integrals like the left member of equation (22). The equal—
ity

jfl ()" V142 o _

N (n=t)" V147 j[" (n—t) ~/1 2 4
-1 (9t)"2 % L (e=)™

follows where the principal—part sign is needed on but one side of the
equation, depending on the value of 6 vrelative to . From this
result and equations (16) the following relations are obtglned:

K

A fo
(£) 72 -2 [ o oioyao " 0T 0y (o e

1 -1 t(e—t)

K
(E) Wu _ B(n+l)fe°
x /) Vo b Jg

1

a* c(9) dej€ (:;;)t)M'l :" dat, n>0 (23b)
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At The range of 17 in these two equa—
tione has been restricted, respec—
tively, to negative and positive
values in order to avold mathemnt-
ical difficulties arising when sin-
gularities occur simmltansously at
t =6 and t = 0, The shaded por—
tion of the accompanying sketch is
the region of integration in equa—
tion (23a). In the sketch, the

-/ { vd

4
» inequalities -1568:<0, 0<9,51
have been assumed. This implies
41 ¥ that the plan form has two subsonlc—
L 4<t<¢p ‘type leading edges and such a con—
L dition will be assumed to apply
| il _t
hencefarth.

4 4, It is particularly convenient
to invert the order of integration
in equations (23a) and (23b).
Expressing the principal parts in the forms

j[" (n=t)"*~ 142 4t - lim j"l M (n=t)" Jl—t"-
=) L. -

-1 t(e—t )" @~>0 (n+1)' +(6—t—a)

] K 2 K
(n=t)" ~1-% _ ( T (g=t) V142
at 6_90 (|c+l)' a@) f dt

1 (6=t )KF2 t(6-t—)

substituting from equation (20), and inverting the order of integration,
leads one to the forms

K+1
( >_= lim =B (_8_> f” (n=t)° W12 at
A—>0 Je! \ - t
K+l

Z by o1 ae
6 =0

0 4=
s 0
~/;1 (9—t—a) +/(8,6)(6-61) he
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( ) ) a—>o lmn. <aa>n+l fn - J]::t—z. +
K+l

1
bi 6~ do

]

f 0 i=0
) T]>O
01 (6—t—a) (8,-0)(6-01)

Use of the algebraic identity

em

1 (t+a)®
e o3 (taq) Tt 4 (B0

(6-t—a)

T

1

permits the expression of w,; In the alternative forms

R R+1
<x> Vo &—>0 )-mu. 8@)
K+1 1
z by ; gi~Jd(t+a)d2ag
f“ (n=t)" V142 at f © i=0 =1
—_—— +
-1 & 01 / (65-6)(6-61)

K+l

é by (t+)l as
01— (. +\. 7 32
f (q~t) 1-tdt/;010

t 1 (6-t—a) /(6 —e)(e—sl)

-1

K1l
by (t+a)l a6

K ("]""G)K v 1-t2dt f % i
]

1 (6—t—a) #/(6,-6)(6-81)
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, K+1 1
Z by 013 (t—a) F2a0
f“ (n=t)" ¥V1t2at feo = = .
1 b 01 ¥ (85-6)(8-91)
K+1
Z by (t+a)l ase
fGO'“ (n=t)" V1t2at feo 1=0 N
1 t 01 (o-t—a)+/(95-6)(6-61)
K+l
Z by (t+a)l ae

f’l (n—t) ~/ 124t feo
8 —a 81 (6-t—) ./(e o-9)(6-01)

0

The double integrals occurring first in the right-hand members of these
equations are of degree ® in o and theilr derivatives consequently
veanish, Moreocever, from the ldentitles .

( T s, bex

s (x—a)(xz-D)

b
de = < 0 , a<X<b (24)

fa (6=x) /(8)(0=2) )
(b—x)(a—x)

, I<8

-

it follows that the last terms in the right members vanish and that the
expressions for w, become

K+1

K
<.B_> Yo _ lim B A)
X Vo @—>0 hr? da
r+1

/‘91'“ (n=t) ‘Ji—_ Z b1 (t+a)?

-1 iz #(8 o—t—a)(81-t—)

dt, n<o0
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@ 3oy
X Vv, @—>0° lm.
feo‘“ (n=t) ‘\/__tz Z by (t+a)?
1 »/(t+oo—e ) (t+a~61)

If, as in the appendix, the finite part of an integral is

fb A(xy)dxy f < > A(xz)axy
a (xl—b)1+1/2 1. 3...(21—1) 3b (x _b)llz

( j f Alx1)dxs
13...(21—1) b (210)*'2

the expressions for w; may be written in the form

at, n>0

K+l
. byt
81 ,/
BY ¥u _ (g=t) V147 5 i=0
<§> Vo ’-l-lt. - <a‘b VAT —t)(el—t) at, 1 <0 (25&)
K+1
i
3 K41 E: byt
B ) ¥u _ o (n-t)" Vl—- i=
<§> Vo " Tl J[ <at r———————°o)( » >0 (25b)

Equations (25a) and (25b) are the fundamental equations far a
lifting surface.and, since w,/V, has been assumed known as a polyno—
mial in 7 = By/x, it remains merely to determine the unknown coeffi—
cients by by equating coefficients of 1 on both sides of the
expresslons. In the form given, 1t appsars that far x>0 +the number
of equations obtailnable exceeds the number of undetermined coefficients.
No general theorems of determinancy have as yet been established as to
the uniqueness of the solutions, but applications to be made later will
indicate the techniques involved In calculating specific examples. In
the laterally symmetrical case, where -61=8,, solutions are sasier to
determine and the fundamental equations are
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K+l

Z byt
K

BYwu_ 8 [0 (n=t)" */l—t <
<x> 7o " hK:J[;l 5 JE"—'_—— dat, <0 (26e)

K+1

batd
R+1 Z 1

j{ ° (nt) ~/1?— (6’0) e, N0 (26v)

o]

N

S|
1

£|m

N
H ™

Nonlifting Case

A radiasl element emanating from the origin is to be canstructed
such that it has a quasi-—conical thickness distribution”

K

*y = CF

where C 1is a constant and A, 1is the streamwise slope of the elemsnt
as defined in equations (8). The derivation of the induced pressure
fleld associated with the element follows closely the analysis In the
lifting case. Thus, a triangular plan form is first considered where
one slde 1s parallel to the stream direction and with a vertex angle ©&.
From reference 10, pressure coefficient can bs written in the form

_ 2 (x—x1) dxa1
A Uéfxu e [ (z—x1 P82 (32212 (=1)

where the region T 18 the area on the plan form that lles ahead of the
traces of the forecons from the point (x, y, O) and the integration
wlth respesct to x3 1involves the finlte part. .

In the notation of equations (13), the analogues to equations
(15a) and (15b) are

K K
B) ac - _2Ca0 6%(kr1) PV t(n-t)" at 1
X = » —l<ngocl (28&
<x P s ~1 (6-t)%2 /142 ners )

& K
E) 4. < _2C.a e"gc+1)f" t(p=t) at
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If C 1s a function of 6 and the thickness elements cover the rsgion
between 61 and 6,, pressure coefficient on the plan form is given by

the expression

t(n—t )K at

&
E) c. = lim —2(K+l) =€ GKC(G)dB 1
( «=e “/;l u/; (ot 2 1ee

t(n—t)F at (29)

f o¥c(o)as 5
ne -1 (6=t)" "2 /142

/=° to be a polynomial of

The boundary conditions require ﬁ C
degree &k 1In 7n. If the (k+l)st deriw %1ve of equation (29) is set

equal to zero, the relation
T 5(q-t)" at

K+1
0 =f:l 6*c(e)ae <%> /1‘ (o=t )2 W12 *

% AN t(n-t)® at
][ 6%c(0)as <——> f 1
1 on -1 (6-t )2 142
holds, and after further diffesrentlation reduces to

_ [P0 g¥c(e)as _ 90 6%c(0)dg
° f: (6—)F+2 ( > (n+1)' (6—)

The functlion C(6) satisfies the sams integral equation that arose in
the lifting case. (See equation (18).) The solution can therefore be

written, as in equation (21), in the form
K K+l

= C(e) K = X a‘iei \
ha 7 <B> £ J(e,0)(e-61) (30)

The equivalence

J[ﬂ t(n—t)" at =fn £(n=t)" at
-1 (gt )k+2 N1—t2 1 (8-t )K+2 /1—’02
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permits the rewriting of equation (29) in the forms

K
(%) c, = -_E(_':tgl).f c(e) e“def t(nt)” at s 1>0 (31a)

(6t )12 V142

K
B) C. = ‘2—-———(“”’1)f c(e) o¥as k t(”"t)n v <0 (
g = ’ 3lb)
<x P "B Je, —1 (6-t)E+2/ 142 !

Substitution for 6°C(8) from equation (30), inversion of the order of
integration, and use of equations (24) leads to the fundamental rela-—
tions

k+1
( Z o, bb
K . 81 K K+l

B) c, 2_ [ t(p-t) < 9 ) =0 at

- " R <0 (323-)
(x TR, 12 \ot  (85~t)(81=t)

K+1
aiti

R+1

(%5 c, Bi!]F o t(TL—t) (&t) J(t—eo)(t—el) dt, 7>0 (32b)

When 63 = -8, these equations become

K+1
( " aiti .
) oo f U (S e
<x Cp 5n. - ta_eoz a (33a)
< K+1
K Z E.iti
8 _ 2 °t<—t)"< )
<x> Cp ;3n3 1 J1i2 \ ot dt (330)

The determination of the thickness distribution corresponding to a
given pressure distribution can thus be obtained from the above equa—
tions by equating coefficients of 1 and solving for the unknown
coefficients aj. Specific examples will serve to make the steps
clearer; such problems will be considered in the following section.
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APPLICATIONS

Since homogeneous flelds of low degree have already received con—
glderable attention, several results have been published previously. In
the case of thickness problems corresponding to specified pressure dis—
trivutions, however, solutions have never, so far as is known, been
sought in terms of the given pressures. Rather, the thickness has been
assumed known and the resulting pressure distribution calculated. This
latter attack involves no question as to uniqueness and a one—to—ons
correspondence certalnly exists. When pressure ls prescribed first,
however, it becomss necessary to consider the possibility of nonunique—
ness. In two-dimenslonal, low—speed flow a freedom of choice 1s known
to exlst and leads to the introduction of purely circulatory flow which,
in turn, provides the mechanism of 1ift. No analogus to this occurs in
the low—speed, two—dlmensional, nonlifting case when the body is smooth
end 1s assumed to close. In the following developmsnts a multiplicity
of solutions will, however, occur in the nonlifting case and bodies with
given pressure distributions retaln a degree of freedom.

Equations (25) and (26), together with equation (21), suffice far
the solution of quasi-conical 1ifting problems while equations (32)
and (33), together with equation (30), apply to symmetrical wings. In
the applications to follow, the division into 1ifting and nonlifting
cases has been maintained. The detailled treatment of equations (26) and
(33) can be further simplified if the problems are separated into cases
involving symmetry and antisymmetry about the x axis of the Ilmposed
boundary condlitions. Suppose, first, that the given values of upwash
and. pressure coefficient in these equations are odd functions of 7.
It follows from physical considerations that the loading or surface
glope, respsctively, will be an odd function of 7 and that conse-
quently the unknown coefflcients a3 or bj mst vanish for even
values of the subscript 1. If the transformmtion + = —7 1is made In
elther equation (26b) or (33b), the pairs of equations (26a) and (26b)

or (33a) and (33b) yield consistent sets of simultansous linear equations

that can be obtained from single equalities. Hence, for w; or Cp

expressed in odd powers of 1,
[niel
2j+1
K+1 b2,j+1 t

<E>Kw_‘£=-+—ﬁ. o (n_t)n./l—tz <_ai> J=0 at (34)
) To i, ¥ 3t Wy
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[k/2]
23+1
2,j+1 v

(B) - _’i_jg iﬁ_n(l_zﬁf ( Bt> T at (35)

where the notation [k/2] in the summation denotes the largest integer
contained In r/=.

In the same fashion, a simplification can be achieved for symetri-
cal boundary conditions. Again using the bracket notatlon to indicate
the largest Integer, the resulting equations become, when w, or Cp
are expressed In even powers of 1,

[ (x+1)/2]
bz y +2J

<5>K wa _ +B n9o (n-t) «/1— < > =0 at (36)

/) ¥, Il 3 ey 3
.or

[ (e+1) /2]
K K-+1 22 )

< E) c -2 f %o t(a-t)" /'3 ) g=o at (37)

x/ P prldy Jitz \ot Ny

Wings With Load Distributions

The vawed triangular wing.— Equations (21) and (25) lead directly
to the determination of angle-of-ettack loading on a yawed triangular
wing. This solution is well known and was calculated in reference T by
a method which was a particular case of the present theory.

The boundary conditions are that w,; = — Voa on the plan form,
hence = 0 and, from equation (21),
SA_E - bo+b19 (38)

4 J(GO—G)(G—Gl)
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no
A

Equations (25) lead to the equalities

B Nfo V1t2 J bg+bit

,'I' 1 t at J(t—eo)(t"al)
- _—Efsl V142 d botbat at
b, t 3t J(6s—t)(01-t)
After integration by parts, these relations become
oo _B % (botbait) dt
br 2 (147) (3-0,) (t-61)
wo B fel (botbat) db
A Jo1 2/ (1-2) (80—t ) (92~%)
Hence, : W
& = % [ bo Lo(eo: 91) + bl Ll(eo: el) :I
(39)
@ = % [ bo Lo(—01, —80) -b1 La(-61, —00) J
' J
where
86
Lo(Bos 01) = — f at
1 2 W(1-67)(t-60) (t-61)
and.

8o at 7
L1(6,, O = —
+(00: 02) [ t 12 ) (b—0,) (607

It is epparent that equations (39) can be solved for by and by
in terms of the functions Lo(60, 61) and Li(6g, 61)s Substitution of
the values into equation (38) leads to the expression for load coeffi-
clent )

Lp _ 2a 2G {(eo+61) 826001 ] ‘ (40)

¢ BE o 6502 ¥ (6,-0)(6-61)
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where E 1s the camplete elliptic integral of the second kind with
modulus &1-GZ and

10001 - 0)(02) _ | /100)(trey) ~ «/(07) (i) | (51)
8591 2(65-01)

G =

In the particular case when 63 = -8y, the value of G becomes 6,
and the resultant loading on the unyawed wing becomss

bp M6t
e pEo 262

where the modulus of E 1s #/1-8,2. This latter problem could, of
course, have been solved directly ﬁ-om equation (36) in a much simpler
fashlon.

The rolling triangular wing.— Consider nsxt the case of an unyawed
triangular wing rolling about its axis of symmetry. If the angular rate
of roll is P radlans per second, the boundary conditions on the wing
are that w; = —Py. In this case =1 and, from equation (21), the
loading on the wing is given by the expression

,%a § ble (k2)

where the coefficlents by and bz can be deleted since the loading
must obviously be antisymmetrical. Since {k/2] is equal to zero in
equation (34), b1 1s found to satisfy the relations

%”BTJ{% A2 () o)
_ bljlf% P (%) —_’Eé%? a (430)

Performing one differentiation with respect to t, In each of the
two Integraels, and thon integrating by parts, leads one to the expres—
gions

P _ Bbi8o _7[ o dt _ Bbigo 9 /‘90 dt
Vo b i o212 (1292)%% 4 % 2 /(17 ) (t2-82)

o~ 1



NACA TN 2497 25

o bezfo t dt _ by, D % t at
= ba1bo ; = o .
1 V142 (t7-9,2)%/2 %o v (1-42) (P-6,2)
The last equation reduces to an identity while the formsr one becomes
P —sbleo 8 < ) Bb1 l: (E+K) ] : (4h)
v (1—9 o)

(e]

where the modulus of the complete elliptic integrals E and X is
k = /195, From equations (42) and (44) the loading 1s'

Lp _ . 4p 902 x e (45)

? BZ‘vo<2‘9°2E _ )J—_
1—9

1-6,2

and is in agreement with the results of reference 2,

The pitching triangular wing.— If an unyewed triangular wing is
pitching about its vertex, the boundary conditions become W, = Qx
where @Q 1s the rate of pitch in radians per second. TFrom equ&—
tions (21) and (36), the loading and the relation involving the undeter—
mined constants are

and

ﬂ=5fo H—t) 12 < bo+b2t2 at
Vo bJ 3t

gince K =1 and the loading must be symmetrical about the =x exis.
Equating coefficients of n 1n the latter equation, one has

o-f" E( bdfﬁzbztz ® (16a)
1
IO F ™ T
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or, after carrying out one differentiation end Integrating by parts,
8o

3 P  at d at
0 = b2 <2 — (bo+2b200%) —
o, JE) (P 2) N N e e )
1Q d rt £ at
— @, =-b +
oo aeogo ) (Pe )

- A t% at
(bot2b20P) = | —me—
e aec,‘[o Y(1-47) (P-642)

The first term in the first equation 1s zero and, after Integration of
the terms in the second equation, the following relations are obtained

= 2
0 = bg+ 26,2 b2

)

o

= Do(E-X) + (E-05°K)bz

where the modulus of the complete elliptic integrals is k = /18,2,

The solutions of these simmltansous equations are

_ +8 8,5K°Q be = ) (47)
o= > =
Vo [ 86°K+ (12657 )E | [ 00°K+(1-262)E | Vg
and the resultant loading on the wing is
& _ Lx 2 85" —~ 62 (48)
e vp.fo2e® (B x4 1297 g
emvTe (1—602 1-6 .2

Differentlially deflected trilangular wing.— If the two sides of an
unyawed triangulasr wing are deflected differentially, vertical induced
velocity on the wing is
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and loading must therefore be asymetrical. It follows that k =0
and, from equations (21) and (3%),

Zp_ 118
a N /602_92

and.

at

=S S
h % Ear

An Integration by parts, in the latter expresslon, reduces the integral
to a standard form. A further integration leads to the equality

by = 8 8%
Bx

and load distribution 1s therefore

8 9, 6
2. 2ol (49)

q B ,,/60?

Triangular wing with parabollc twist.— Conslder, f£flpally, an
unyawsed triangular wing twisted symmetrically such that 1ts vertical
induced veloclty 1s of the form

E:ry’z
Vo

where r I1s a fixed constant. Since k = 2, the relations

< ) bo+b292

and

dt

2 = f % (4 t)2 o142 ( a> b0+bat2
8 1

apply. Detalled analysis will be amltted In thls case since 1t follows
the same pattern of development used 1n the earlier cases. Three simml-—
taneous equations involving the two umknowns b, and b, are obtained,
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but the equation relating coefficients of 7 can be shown to vanish
identically and the two remaining equations yleld a unique answer. The
expression for load distribution is

(50)

@ & ( ) (2842 —(1+902)E]+[—(3—e°2)K+h(2—e°2)E:|92
B [—56°4K2+89°2(l+902 )KE+ (ko 04—19902+1|-)E2] /6 ,2-62

wSere the modulus of the camplete elliptic integrals X and E is
1-9 :

Wings With Thickness Distributlions

Triangular wing with uniform pressure.— In reference 11, Squire
considered certain thickmess dlstributions for symmstricael nonlifting
wings In conical flow flelds and calculated the resultant pressure dis—
tribution. The first of Squire's examples was a trlangular plan form
wilth & uniform pressure distribution. It is instructive to consider the
inverse of this problem and to seek the wing assuming the pressure
variation known. The plan form is symmstrically disposed wlth respect
to the x axis or stream direction while the boundary conditions
require that C, is a constant over the entire wing. In this case,

K = 0 and from equations (30) and (37) the following relations hold

dzy _ _ 8

-a_% B lu - 902362 (51)
2 ao
=3 J{ ,fl_—at J—_ (52)

The valus of a, may be found in a manner quite similar to the ome
used in the previous examples. Thus, after the differentiation is per—
formed, equation (52) becames

o, 17 2 at Rt
2 °J. ./5__1?- (B0 2?2 659,01 AP (o)
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After integration, this yields

B _%0 3 , _ solEx)

(53)
2 8o %, 1-66°

where the modulus of the elliptic integrals is 1—9 « If a, 1s
eliminated from equations (51) and (53), the slope of the wing on the
upper surface 1s

dzy _ BCp(1-857) i cp(1-902 x

dx o(k-E) 6202 ) 2(K-E) JrPP—y°

The ordinate of the upper surface results from the integration

Sy

and 1is
(U-00)0y EEE B0 )0 fETE (o

o (R-E ) | 2pn (R-E )

Triangular wing with linear pressure gradient.~ It is now proposed
to determine the thickness distribution for an unyawed triangular wing
for which pressure varies lincarly in the streamwise dlrection. Set—
ting Cp equal to bx, it follows from equation (30) that the slope of
the upper surface 1s expressible as

dz;, =x ao+a292

de«/'”é?

since the solution 1s obviously symmetrical about the stream axis.
Since k = 1, equation (37) becomes

U () e oo

Equation (56) is an identity and, after the coaffiéients of 7 are
equated, leads to the two relations

(55)
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o 2
o= f o_ & i) agteet? . (57a)
. TiE \%/ JEez
2 Bo £2 d & 2
Bd _ _ f _> agtazts 54 (57b)
, T \%) ez

It is of interest to compare the series of equations Just
developed with the corresponding equations in the problem of the pltch-—
ing triangular wing. Formally, the algebraic steps are the same and 1t
is to be expected that, jJust as in the case of equations (46), two
similtansous equations will be obtained and that their solutions will
provide the constants a, and az. In the present case, however, equa—
tion (5T7a) can be shown 2o vanish identically and as a result only one
equation in two unknowns remains. This means that an infinite number of
possible solutions exists. The following calculations will supply the
necessary details to conflrm these remarks.

Consider equation (57a) and introduce the transformation

2 =T, 302 =To (58)

Then, by means of the relatlons
2 2
.58, 8 =2(2-r—a—-+i> (59)

the equation becomes

o]
u

T
%f o 4T (21_ -I- aT
T ./T-—To

aafTo aT L+_>
1 :/J:‘l—' 3T dT -7?

[ 32 fTo oT 4Tt _ 9 To ar ]
Lar2d,  Jam)(r=,) ¥, Vi J(l-rr)(T--ro)
2 T
&2[ o ° 27 /I—ﬂd'r—___ T 947 +
BTQ 1-T BTQ 17

o1y —— f T aT f :,
a”"o N (1-7)( 'r—‘ro) aTo o (1—'r) (‘r—'ro
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Each of the above integrals can be evaluated directly and the bracketed
terms are in both cases zero. Since simllar integrals occur in problems

of this type, hawever, it 1is worthwhile to give.the following general
formmlas (n an integer)

T
° 7041

= -, n= O.; = — E(lﬂo), n=1;
1 (A7) (770) 2

__ = [ (2n-1)!

(Ton +1) +
o201 (n—1)in!

n—-1 .
2(23-1)(2n-23-1)¢ nej )

J=1

and

To T T 1
n o) - _9 -0+ = X172 =7
L/: T - dt = 5 1, n=0; = g(To +2T5-3 ), n=1;

n(1o-1) [ (en-1)ir B N (2n+1)!

) 2*2(n+l) L (p-1)in! 2 n! n! '

n—1

Z (24+1)1(en-231) _ py J , n>1 (60b)
(n—3)1319t (o—g21)t ©

. It remains to calculate the terms in equation (57b). If the dif-
forential relations in equation (59) are used, the desired expression is

£ _ & 2
5 = &g <2§-’FOED1+BTOD2>+

a2<e__232 D —-5-—§—D1+D2> (61)
BTQ 8 a‘ro N
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where

To ' K
D1=f -——T—a—L——=—2f dn"udu=-2-'ro —%(]-""roz)E
1

N r(1—=7) (7—T5) 3

To )
Do = f —_—rar —ef an? udu = —2E

'r(l—'l') (T~

Ds=fT°———T-.1——=—2 j‘Kdnaudu=-35'ToD2 +1l)-f- (l+'r°) Dy
1 Jr(1-T) (7=7o) o

and the modulus of the elliptic integrals E and K is #l—x.
Direct calculation gives for the coefficient of a, the expression

E (3—rg) — 2K
(l—'ro)2

and for the coefficlent of ag

2T E~-To k-T2 K
(1-75)°

The value of b fram equation (61) thus establishes far pressure
coafficlent the value

o =-’;2(Taf5;?aF {ao [21(-13(3-902)] +.

as [(eo+e ) K — 20,2 E:I} , (62)

where the modulus of the elliptic integrals is #/1-6_2.

From equation (55), the ordinate of the upper surface of the wing
is

wef @y )

m m

= 20X m2x2-y° +

2p%m2

ag+2p®m Zaz) arc cosh % (63)
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In reference 1ll, Squire considered the thickness distribution that is
obtained by neglecting the arc hyperbolic function in equation (63).
His results correspond to the case when a, 1s -2p2mg2ar and are
gpeclifically

Y g . (6ha)
28%my?
ao0X
Cp = m[(342)K-(M62)E] ‘ (64v)

If the wing is cut normal %o the
stream direction to form a tralling
edge, a triangulsr plan form and an
elliptical cross-sectlon result as
shown In the accompanying sketche.
If the root chord of the wing is

Co, and the maximm thickness at the
tralling edge is +, the constant
ao in equation (6la) is equal to
Bmot /co? and the analytical
expressions for the upper surface of ) 4
the wing and pressure coefficient

motx >
Cp = ~——— | (3-62 JE~(4-20 2 )E 4
P (302(1_902 ® [ o ° ] x——_/_—_

(65b)

It is apparent that a mmltiplicity of thickmess distributions with
the same pressure distributions must exist. Conslder first the case
when a, in equations (62) and (63) is zero. The surface ordinate and
pressure coefflclent are, respectively,

z, = afﬂf arc cosh m(;x (66a)
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_EE‘E_X_P;_[ 2) g _ ] 66
e Tey (148,2) X — 2B (66p)

The lateral sectlon of such a wing is shown for particular values of

my and P 1in the next sketch (the curve denoted by n = w). Along the
root chord the thickness 1s zero while the maximm thickmess position
occurs at the value of mgx/y satisfying equation

mox[y = arc cosh Tox

2 Jf (mgx /[y )e-1 y

or at approximately
mox/y = 1.3128 or y/mox = 0.7617

-

The pressure coefficients of equations (65b) and (66b) are ilden~
tical provided the equality

sz _ mot  [(3-60°) K — (4-20,°)E]
B®  20,%c? [(1+6,2) K — 2E]

holds. From equations (65a) and (66a) it follows that the surfaces

S ONAC
o

2 2 2
2Ze _ < J > [(3-657) f— (A295" JE] arc cosh —o& (67v)
moCo [(1+0,2) K — 2E] ¥

have precisely the same pressure distribution as does also any surface
glven by the relation

27 _ 2724 + 2nZo
T " Tt (670)

where n 18 an arbitrary mmltiplicatlve factor.
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Cross sections in the x = ¢, plane of surfaces glven by
equations (67a) and (67b) are shown in the accompanying sketch for

2z |

\\8

aaaa
L B T TR T
Q

— |

Section BB : Section AA

>

—;\/_ a.nd. mo 1/2. Also :anluded. are sectlons calculated. from
equa.tion (67c) for n=1 and n = 1/5.

Since bodles with the same pressure distribution can be found, the
posslibility of combining results and gotting a body inducing no chan
in the. free—stream pressure should be investigated. From equation (SZ) s
it follows that for Cp = 0, the arbitrary constants a, and ar mst
satisfy the relatlion

82 2K —E (3-95°)

ap 902[ (l+902) K~ E]

and, from equation (63), the ordinate of the resulting surface is
expressible In the farm

230y2 2z, = <mox> /( —l---IPaa.rc::conahm--;_E

where

Pg = P2/P3
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v Py = (1485°) K — 2E

P2 = (3-6.°) K — (4-20,2) E

The surface produces a real wing only if z; remsins posiﬁive and this
condition leads to the inequalilty

(mox/7) ./(mox/y)a —1 [/ arc cosh mx/y 2Pg

The rangs of mox/y 1is from 1 to = and it is easy to show that the
left member has the lower limit 1 at mox/y equal to 1. On the
other hand, P5 can be written in the form

P2
Py = ~
Po2(1-9,°)(K - E)

and, since K —E>O0 for 68,<1, it appears likely that P, 1s
greater than one. A more detalled check shows, in fact, that Pz 1lies
between 3 and 9 from which it follows that the inequality can never
be satisfled In the neighborhood of the leading edge and no real wing
with zero pressurs coefficient 1s possible. The variation of P;, Pp,
and Pg 1s shown in the accompanylng sketch in which the variables are
plotted as functions of 652.

|
\\
9 6 2K
\x | 4"
7 4 8 ///
\ §/T
\ | 7
\ 7
\~-
5 2 4 2 b
/ \\;é
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] \‘\\\
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0 2 4 .6 &
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CONCLUDING REMARKS

It has been shown that the assumption of gquasi——conical fiow in a
supersonic fleld transforms the basic partlial differential equation for
the perturbation potential to an elliptic—type equation in two inde-
pendent variables throughout the region inside the Mach conme. It 1is
therefare not surprising that solutions of wing problems, for both the
lifting and the nonlifting case, lead directly to the comsideration of
an integral equation (equation (18)) of the type encountered in two—
dimensional subsonic theory. In the analysis and the applications of
this repart, 1t is shown that.for a large class of spscified conditioms
the kmown Inversion of the Integral equation produces solutions that
roquire stralghtforward Integrations and the solving of simltaneous
linsar equations.

An unusual featurs of the resulting theary is the fact that a
mltiplicity of solutions may appear In a given problem. In retrospect,
this degree of freedom 18 not surprising since it is well known that a
mill solution exists in two-dimemsional subsonic theory and appears In
1lifting problems in the form of a purely clrculatory flowe In the study
- of subsonic symmetrical profiles, this arbitrariness in the solution
occurs when the gecmetry of the wing is to be determined from the dis—
tribution of pressure exsrted by the fluld. Since, however, closure of
the wing 1s necessary, an additional condlition is given which estab—
lishes unigueoness in mmch the sams manner that the Kutta condlition
imposes uniqueness in the 1ifting case. In the comsideration of super—
sonlc quasi—conical flow, similar conditions to determine uniqueness do
not necessarily arise. Mathematically, the condition of umiqueness 1s
determined from the degree of dependence between simmltaneocus linear
equations.

One further remark concerning the anslogy between 1ifting and non—
1ifting problems appears to be pertinent. In two-dimensional subsonic
theory the integral relation between the perturbation velocities along
the wing surface may be written, in the 1ifting case, as

c
w(x,0) = -;—B- f u(xy,0)dxy
o X~X3

where ¢ 1s chord lengthe In the symmetrical case, the Iinterrelation
is expressed in the form

fc w(xi,0)dxy

u(x,0) = S
78 XX3

o
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Thus, aslde from the factor B, a complete duallty exists in the formal
mathematicel analysis of the two problems. Hence, the circulatory motion
assoclated with a flat plate at zero angle of attack (see sketch) is
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Lifting case Thickness case

anglogous to a slape distribution associated with zero pressure coeffi-—
clsnt. However, in three—dlmensional supersonic wing theory the basic
relations between w and u on the wing do not have the property of
duality (see equations (10) and (27)). The assumption of quasi—conical
flow, however, together with the restriction to triangular—type plan
forms with subsonic leading edges, brings the study of 1ift and thick—
ness into more general parallelism and a close similarity exists
botween the final expressions in equations (25) and (32).

Ames Aeronsutical Lsboratory
National Advisory Committee for Aeronautics
Moffett Fleld, Calif., July 10, 1951
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APPENDIX

THE GENERALIZED PRINCIPAL PART ARD FINITE PART OF AN INTEGRAL

If the singular integrand of a convergent .improper integral is dif—
ferentiated formally, without due regard for the singularity, the result—
ing expression 18, in general, improper. In applied theory, however,
the differentiation 1s usually to be performed upon the integral itself
and In this case a carsful treatment of the entire expression leads to
a finite answer. The two most common examples of such problems arise
in the evaluation of the Cauchy principal part and Hadamard's finite
part. The following development indicates the manner in which these
cases are extended to include multiple differentiations. (The gener—
allzed principal part shall be concernsd with integrands having singu—
larities within the region of integration and of order n where n is
a positive integer; the flnite part, on the other hand, involves inte—
grands with singularities at an end point of the region of integration
and of order =n + 1/2.)

Consider first the eveluation of Cauchy's principal part. In this
case a Single differentiation is used and the expression

) b
g(x) = o L/; A(xy) =n |x—=x]| dx1, a<z<d (a1)

becomes, for constants a and b,

b
a(x) = f A(xy)dxy (a2)
a

X=—=X3

Here the symbol on the integral sign indicates that g(x) is to be
evaluated by a limiting process defined as follaws

_ T A(xa) P alx)
o) = m | [, [ M) | @)

To assure the convergsnce of this integral it is sufficlent but not
necessary to assums that A(x) is differentiable at the point x5 = x
and that elsewhere within the region of integration A(xi:) is either
continuous or possesses Integrable singuiarities. The concept of the
Cauchy principal part is so0 well known that the symbol on the integral
is often omitted, as shall be done here.
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¥

Turning next to the case of multiple differentiations, consider the
expressions

b b
T dx Xi—x o 0x xX;—x A (x—=x,)2° *

a

where the llmits of integration are Independent of =x and the symbols
on the two latter integrals indicate that the generalized principal part
is to be calculated. From the definition of I 1in the first integral,

i1t follows that

_ 9 b= _ _ b—a
I_g;m]—c_—a- 7 (= (a5)

The simple definition given by equation (Ak) can be generalized to
include integrals of the type

N P d bA( ) dx
= == — = e— -—x'l'—l.
Iz = = A(x1) 1n |x—=x,| dx; = j; x
b A )
— j[ A(Il) dx; (A6)
(11—31)2 .

a

Equation (A6) defines the symbol appearing in the final member. It is
possible, however, to relate this integration to the particular integrand
in the final integral of equation (Al4) by writing Iz> in the form

b b
-9 A(zy) — Ax) dx;
I, = . [ [ r— dx; + A(x) \/; Tix :I

Then if A(x;) 1s integrable and 1f, at x; = x, 1ts derivative exists
and 1s single valued, the expresslon for I, becomes

b . b
we [t o
a 1™

a (x1—=x)
_ fb M) ~ AG) o A) (b-a) (a7)
o () (=) (x-a)

where the results of equation (A5) have been used.
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The first integral in equation (A7) is now in a form that imvolves
no extension beyond the concept of Cauchy's Principal part and the
evaluation of I, may be carried out with that form. Furthermore , 1t
can be shown from equation (A7) that if the indefinite integral of
A(xy)/(x1—=x)2 exists such that '

A(xy)ax; :
f —(x—i-_;)—; = G(x1,x) + C (48)

then the value of I ocan be found by following the conventional rules
for substitution of limits so that

b
j[ A(za)dxy _ G(b,x) — G(a,x) (A9)
a (x3=x)2

The extension to higher ordered derivatives i1s obvious. Thus 5 for
a and b Independent of x, one has

n+1 b n b
2 S y S [ Aaen
Tn = NEZEENVA A(x1) In |x x| dx; = 322 o (xy—x)
= ! j[ P Alxa)ax (A10)
a (11~x)n+l

Equation (Al0) defines the final member appearing in it. The quantity
Iny, can also be written in the form

bA(x) B(x,x;) bB(x:&:)dx :l
= nt X)) - +X1 5%1)dx;
In+1 = n. |: /; ( L I{)n+1 Oxy + ji (11 Ic)n+1 (All)

where

N1

' (n-1)
B(x,x1) = A(x) + 2 f‘) (x2x) 4 o oo s i?_;%_)fx_) (x1x)
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The first n derivatives of A(x;) are assumed to exist and be single
velued at x; =x whlle elsevwhere in the range of integration A(x) .
may possess integrable singularities. The generalization of equation (A9)
holds so that if

f ————-A(xl) i_l_xi = G(xy,x) + C (412)

(xlj'x )

then

A_(.El)_%% = G(b,x) — G(a,x) (A13)
a (x1=x)

It is also possible to extend the definition of egquation (Al0) to
include a functional dependency on x 1in the numerator of the lntegrands.
Thus, replacing A(xi) by A(x,x;), equation (Al0) again defines uniquely
a principal part integral provided the first n derivatives of A(x,x;)
wlth respect to x and x; exlst at =x; = x.

The orlginal concept of the finlte part was used by Hadamard in
connection with square root singularities. Consider the expressions

b
b
J= — = — = —— ———s/z (Alk)
ob Vg Sz, a Ob,/bx,; 2 a (b—=xi)
From the first integral 1un this relation it follows that
b
dx, -2
4 = (815)
s/2
e (bx)*® Voa

The natural extension of this 1dea 1s to conslder

d fb A(xy)dx, _ J[b E_A(xl)dxl __1 J[\b A(x; )dx, (A16)
a

Jo= =2 — =

: 3/2
ob Va /b__xl a Ob N b-x3 2 (b—x1) /
vhere A(x;) 18 contimuous at xX; = b and is integrable elsewhere in
the range of lntegratlion.

The evaluation of Jz can be related more closely to the integral
of equation (Al4) after rewriting Jz 1n the form
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b b
Tp = 9o [ f A(x;) — A(b) ax; + A(D)- f axy ] (ALT)
-db 8 Jo—=x1 ‘ a o bEa

It follows that

b A(xl)dxl o A(xz) — A(Db) dx, + A k
A\Zy)dxs . A(b) ——7— (A18)
J{; (bx1)>? /; (b-xl)S/ = : ‘7[; (bx2) *

An interesting integratlon technlque can be evolved from equation
(A18). Setting

fb Amlazs | 1tm [P aG) A®) o 2a(m)
a (b-x2)%° VB_N) a  (bx)™" vb-a

and setting the indefinite integral of
f A(xa)dxa
(b"’xl)s 2
equal to F(b,x1) + C, it follows that

) ‘
A dx
Ja ((t:_i)"ﬁl5 = —[Flv,a) + cl

where

c= 1lm [a-f‘—(l)—_F(b,xl)]

X31-—=>b -’b—xl
Thus, with the proper choice of the constant of integration, the defi-—
nite Integral is found by substituting conventionally the lower limit.
In practice, C 1s often zero.

Defining J, ., in the form

(3] [t (2 2

(_l)n 1. 3-..(2&—1 ‘7[' A(x:_)!;.:il/a (Al9)
a 2%

ey
]
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it follows that

fb Alxy)axy  _ fb A(zy) —B(b,xa) o, fb B(D,11)dT2 (150
& (bx1)M% 2 (bxy)E & (bx1 )2t

where

(=L )n-lA(n'l) (b) (bzzq )2

B(b,x1) = A(b) — A'(D)(b—x1) + eee +
(n—1)?

and

j[b axs (-)'e ( > 2 _ 1
a8 (bx2)'F - 1.3...(201) a. (b-xlfé‘ 211 (ba)TE

>

It is furthermore possible to extend the definition of equation
(A19) to include a functional dependence on b of the integrand A(xi).
Replacing A(xi) by A(b,x1), equation (A19) again defines uniquely a
finite part integral provided that

1im BnA(b,xl) E

> | TR =0
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